利用ANSYS/LS-DYNA仿真计算

发布日期:[08-11-30 21:57:17] 浏览人次:[]

变化。值得说明的是:1.拉延筋与板料接触(contact-drawbead),可认为是非线性弹簧算法,需给定单位长度拉延筋的对板料的阻力变化曲线。2.LS-DYNA 新增加三种接触类型(forming类型接触)专用于板成形模拟,这些接触类型降低了对模具网格的连续性要求,并且计算速度更快。 LS-DYNA进行板成形分析时可选择使用3D adaptive mesh功能,可在计算过程中对板料网格进行局部加密,网格加密的准则可选择为:1.板厚变化;2.曲率变化;3.单步长接触穿透深度值。 2. 锻压 锻压过程是金属体积成形过程,与板成形相比,其物理描述和力学模型中相同,但单元、材料、模具定义不同。在锻压过程中往往考虑模具的变形,单元采用实体单元,材料在多数情况下经历较大的温度变化,为热塑性材料。LS-DYNA的实体单元可分为三大类:1.结构单元;2.ALE单元(包括Euler流体单元);3.声单元。进行锻压分析时要采用结构实体单元,这些单元可分为单点积分、多点积分和缩减积分(select-reduced)单元;节点带旋转自由度(nodal rotations)和不带旋转自由度单元。单元采用co-rotational坐标系统分离单元运动中的变形和刚体运动,并在应力更新中采用Jaumann应力率,避免因刚体运动产生应力。在剪切变形较大时,可选择使用Green-Naphdi应力率。变形结构单元为8节点6面体,可退化为6节点5面体或4节点4面体。 LS-DYNA的热塑性材料通过列表给定不同温度下的材料性质,例如常用的一种各向同性热塑性材料可将整个温度范围分成7段,每个温度段内可定义不同弹性模量、泊松比、屈服应力、硬化模量、热膨胀系数等参数,这种材料采用线性硬化模式。材料的热性能(比热、导热系数等)可为各向同性或各向异性。 在LS-DYNA中结构材料和热材料的定义是分开的,并且在接触传热分析中定义相关热接触界面,因此可进行结构和热场的耦合分析。 在多数锻压分析中,随着金属件成形过程的继续,初始网格的变形逐渐加大,将导致单元精度降低甚至发生畸变,因此必须使用网格重新划分功能(remeshing)。网格重划分包括以下几个步骤:1.检查网格的变形程度,若超过规定的变形度停止计算,保存结果;2.检查需要改变位置的节点,调整节点位置,保证材料边界不变,材料内部节点可自由移动。3.将保存的结果映射到新的网格上。4.重新对网格初始化并进行计算。LS-DYNA对于二维与三维网格,皆提供重划分网格的功能。另外,LS-DYNA早已采用一种更为先进的网格ALE,即任意拉格朗日-欧拉网格。ALE网格进行Rezoning的目的和过程与Remeshing基本相同,但两者的网格描述存在本质差异(后者是拉格朗日网格)。ALE结合拉格朗日和欧拉网格各自的优点,已广泛用于结构材料的极度变形。有关ALE的技术在下面详细说明。 3.浇注 前面已经提到,结构单元运动描述采用Lagrange方法,这是因为Lagrange描述中始终以初始构形为求解的参考构形,由材料点(material point,在Total Lagrange中是初始构形的X0 ,在Updated Lagrange描述中参考构形是上一个积分步的构形,即X n-1)来确定动量方程、运动-应变关系、应变-应力关系。由此可见,任一单元的积分点在整个过程当中可以保持不变,即为同一材料点,这对于求解历史相关的变形问题是极为重要的,因为对于固体结构材料而言,正是如此。对流体介质,LS-DYNA采用Euler描述,即以当前构形(通常记为spatial point x),来确定动量方程、变形-应变关系、应变-应力关系,因此不同时步单元积分点不是相同的材料点,即物质可以在Euler网格间输运,由物质的运动导致压力和能量在Euler区传播。 Lagrange和Euler 是对物质运动的两种表述,这两种方法本质上是一样的,但由于采用的自变量(其自变量分别为X,t和x,t)不同,各自具备特点。在形式上,前者的网格节点与材料点在
|<< << < 1 2 3 > >> >>|
www.mapeng.net 马棚网
www.mapeng.net
文章作者:未知 | 文章来源:网络 | 责任编辑:admin | 发送至邮箱: | 加入收藏:
本文关键字:ANSYS  LS-DYNA  仿真  计算
本文所属专题:
相关资讯
热点资讯
推荐资讯

关于我们 | 站点导航 | 使用帮助 | 友情链接 | 广告服务 | 免责声明 | 新手上路
设为首页 | 加入收藏 | 在线留言 | 马棚网QQ群:{92562572}{102901272}{333259257} | 交流QQ: 客户服务 客户服务 客户服务